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Abstract
A simple model has been suggested for describing self-organization of localized charges and quantum scattering in 
undoped GaAs/AlGaAs structures with 2D electron or hole gas created by applying respective gate bias. It has been 
assumed that these metal / dielectric / undoped semiconductor structures exhibit predominant carrier scattering at 
localized surface charges which can be located at any point of the plane imitating the GaAs / dielectric interface. The 
suggested model considers all these surface charges and respective image charges in metallic gate as a closed thermo-
stated system. Electrostatic self-organization in this system has been studied numerically for thermodynamic equilibri-
um states using the Metropolis algorithm over a wide temperature range. We show that at T > 100 K a simple formula 
derived from the theory of single-component 2D plasma yields virtually the same behavior of structural factor at small 
wave numbers as the one given by the Metropolis algorithm. The scattering times of gate-induced carriers are described 
with formulas in which the structural factor characterizes frozen disorder in the system. The main contribution in these 
formulas is due to behavior of the structural factor at small wave numbers. Calculation using these formulas for the case 
of disorder corresponding to infinite T has yielded 2–3 times lower scattering times than experimentally obtained ones. 
We have found that the theory agrees with experiment at disorder freezing temperatures T ≈ 1000 K for 2D electron gas 
specimen and T ≈ 700 K for 2D hole gas specimen. These figures are the upper estimates of freezing temperature for 
test structures since the model ignores all the disorder factors except temperature.
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1. Introduction

Charging of surface and interface defects is one of the key 
physical phenomena in semiconductor electronics [1–4]. 
Little is known however about this phenomenon in undo-
ped GaAs/AlGaAs structures. A study of these structu-
res containing gate-induced 2D quantum electron or hole 

systems has been initiated recently [5–12]. The situation 
with a thin gate dielectric and shallow location of gate-in-
duced systems is of interest for studying the role of surfa-
ce charges [11, 12] and for the development of quantum 
systems with ultimately small characteristic lateral sizes 
[13]. The aim of this work is to briefly describe the simple 
model [14] that we suggested for illustrating the effect of 
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electrostatic self-organization of surface charges on the 
gate-induced 2D electron or hole gas.

2. Test object and suggested model

In contrast to the standard modulation doping method, the 
2D gas is in this case is created at low temperatures by 
bias Vg between the metallic gate and metallic contacts 
connected to the GaAs working layer [5–11]. The charge 
on the surface of the GaAs protective layer is generated 
in equilibrium at Vg = 0 and a high temperature, along 
with the image charge in the metal, and a common Fermi 
level is established in the metal / dielectric / undoped se-
miconductor structure (Fig. 1a, b). The common EF level 
is pinned by the defect states near the band gap center 
at the boundaries of the epitaxial heterostructure with the 
insulator and the GaAs semi-insulating substrate. This 
provides for flat bands in the semiconductor. In accor-
dance with the Gauss theorem the Al2O3 gate dielectric 
thickness d (20–30 nm) and the difference in the work 
functions Ae for the adjacent GaAs layer and the Ti gate 

(Fig. 1b) determine the negative charge concentration nσ 
at the GaAs protective layer and the positive charge con-
centration at the metal/dielectric interface:

e
0 ins

A
n

edσ = ε ε .	 (1)

Here ε0 is the dielectric constant, εins ≈ 8 is the dielectric per-
meability of Al2O3, Ae ≈ 0.3 eV, and e > 0 is the elementary 
charge. Upon cooling the earthed gate structure to T ~ 1 K 
its band diagram and the Ae and nσ parameters remain the 
same as in equilibrium. The concentration nσ ~ 5 · 1011 cm-2 
is assumed to be constant even if Vg ≠ 0 and 2D gas is for-
med at a low temperature (Fig. 1c, d). In this case the bands 
of the layers 2, 3 and 4 in Fig. 1d are no longer flat.

Equation (1) describes the area-average concentration 
of charges trapped by point defects (traps) at Vg = 0 and a 
sufficiently high temperature on the surface of the GaAs 
protective layer. The distribution of the surface charges 
does not change below some “freezing temperature”. This 
temperature is determined by the energy of electron tran-
sition to the leakage level from the deep traps, but this 
freezing temperature is not known for undoped structures. 

Figure 1. Schematic images of the object of study: (a, b) metal-dielectric-undoped semiconductor structure and band diagram in 
thermodynamic equilibrium: M – metal (Ti), 1 – Al2O3, 2, 4, 6 – GaAs, 3, 5 – AlGaAs, Φm – work function of Ti, χ1, χs – electron 
affinity of Al2O3 and GaAs, working layer 4 is empty; (c, d) a variant of the operating mode corresponding to a 2DHG (T ~ 1 K, 
eVTG < 0 is the difference of the Fermi levels in the working layer and the upper gate).
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Frozen disorder in the locations of surface charges and 
hence image charges in the metal, together produce static 
fluctuations of electrostatic potential at which mobile car-
riers are scattered in 2D gas at ~ 1 K if the gas is located 
close to the surface (z = 30–60 nm) [11, 12].

We simulate this disorder and calculate carrier scattering 
times in 2D gas within a simple model [14]. This model 
ignores the difference in the binding energies of electrons 
and GaAs surface traps (i.e., they are considered chemical-
ly equivalent [4]). It is taken into account that the point trap 
concentration on the GaAs surface is very high (~1013 cm-2 
[1, 4]) in comparison with nσ. It is assumed that electron ex-
change between adjacent traps in thermodynamic equilibri-
um on the surface is much more intense than between the 
surface, the gate and the semiconductor bulk. It is accepted 
for simplicity that point charges can be trapped at any point 
of the ideal plane imitating the real GaAs/Al2O3 interface.

The state distribution of this thermostated system of 
charges with a fixed number of particles obeys canonical 
Gibbs distribution and the system in thermodynamic equi-
librium is similar to classic single-component 2D plasma 
[15, 16]. In the suggested model all the disorder factors 
except the equilibrium temperature are disregarded, and 
the disorder itself and its effect on the scattering times in 
2D gas can be analytically described.

3. Basic definitions and final 
formulas of the model

The point surface charge distribution determined by the 
radius vectors ri = (xi,yi) can be conveniently described 
with a Fourier transform:

ii

i
eρ = ∑ qr

q .	 (2)

We assume that the number of charges N and the system 
area A tend to infinity and the disorder at ρq is isotropic:

σ σ .	 (3)

In the solution of Poisson’s equation the delta function 
term yields a constant potential that can be neglected. Of 
interest are only the fluctuations of potential caused by the 
isotropic structural factor Fq. Given mutually independent 
and completely random ri we have Fq = 1, and then Eq. (3) 
describes white noise.σ

Deviations of Fq from 1 due to Coulomb’s charge in-
teraction can be taken into account within the theory of 
weakly non-ideal single-component 2D plasma [15, 16]. 
A critical point in analyzing any plasma of this type is to 
choose the method of maintaining electrical neutrality of 
the system. As a rule, this is achieved by formally introdu-
cing a homogeneous background neutralizing charge into 
the ultrathin layer that is occupied by the single-component 
plasma [15–18]. On the contrary electrical neutrality in the 
case considered at the zero gate voltage is provided by the 

image charge in the metal (Ti/Au) for each point charge on 
the semiconductor surface. Temperature T is another theo-
ry parameter along with nσ. The following simple formula 
has been derived within the case-adapted theory:

F k
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ε + ε , ε1 = εGaAs, ε2 = εins. When deriving Eq. (4) we 

ignored the difference in the dielectric permeabilities of 
the GaAs and AlGaAs layers and by analogy with an ear-
lier work [20] took into account the image charges in the 
metallic gate.

Note that for standard structures formed by remote do-
ping, a theory was developed long time ago describing the 
effect of ultrathin charged impurity layers on the low-tem-
perature parameters of high-mobility 2D carriers [17–19]. 
This theory is based on the knowledge of isotropic Fq for 
the charged impurity distribution in the delta layer. For 
the undoped structures in question we developed a similar 
theory. In this theory the quantum (τq) and transport (τt) 
carrier scattering times in 2D gas can be expressed with 
the following formulas:

q q q

F

q

z

d1

20

2 2

2

2n
m
I I

p
F

q
k
D

e C qqz
d*

τ
π

;

τ
π ;	 (5)

.

Here pF is the Fermi momentum in the 2D gas, and Fq is 
given by Eq. (3) for ri distributions frozen at some un-
known equilibrium temperature. Note that Eqs. (5) follow 
from Poisson’s equation with account of gate screening 
and self-screening of carriers in the 2D gas in the Tho-
mas–Fermi approximation and from Fermi’s golden rule 
where the interaction matrix element is found from unper-
turbed carrier wave functions in the 2D gas.

Figure 2 shows an example of the behavior of the in-
tegrand terms in Eqs. (5) for τq and τt with Fq determined 
by the adapted single-component plasma theory (Eq. (4)). 
Evidently, it is sufficient to calculate the integrals in Eqs. 
(5) for the 0 < q < 0.1 nm-1 range and substitute the dielec-
tric permeabilities of Al2O3 and GaAs with their average.

4. Metropolis algorithm 
calculations

For thermostated systems with a constant number of inter-
acting particles, a universal, efficient and powerful modi-
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fication of the Monte-Carlo method has existed for a long 
time, i.e., the Metropolis algorithm [21–24] providing a nu-
merical solution of a key problem of statistical physics. The 
algorithm locates the maximum of the internal energy dis-
tribution W(E) for a system at a preset temperature, i.e., the 
most probable E, as well as the respective distributions of 
interacting particles ri. Noteworthy this algorithm uses data 
on ri and the internal energy of the system, i.e., it does not 
require calculating the system’s entropy and free energy. 
The calculated ratio of the probabilities of the system being 
in the two different states obeys the canonical Gibbs distri-
bution [24]. Calculations with this algorithm were the main 
tool used for numerical simulation of single-component 2D 
plasma [16]. The original algorithm simulated systems of 
relatively heavy particles, and E calculations ignored the 
kinetic energy contribution [21, 22]. In the case conside-
red this contribution can also be neglected because we deal 
with localized charges which are located for a long time 
in presumably equivalent chemical traps and change their 
coordinates quite rarely by jumps. In the suggested simple 
model for a system of point surface charges q0 located in 
the ideal plane and having respective image charges in the 
metal, equilibrium states may exist at arbitrarily low T.

We found these states numerically using the Metropo-
lis algorithm and simultaneously observed the formation 
of a 2D Wigner crystal and its melting at T ~ 1 K [16]. At 
T > 5 K the structural factor Fq depends only on the abso-
lute value q of the wave vector q. The total simulated area 
was A > 2 × 2 µm2 and contained up to N = nσA = 60,000 
point charges (nσ ~ 5 × 1011 cm-2).

Taking into account the image charges in the gate the 
total system energy is the sum of pairwise interactions be-
tween vertical dipoles having the length 2d:

U q r r dij ij ij
1

2 2
40

2

0

1 2 2
1

2 ,

1

2
ij

i j
E U

�

� � .	 (6)

The multiplier 1/2 in Uij takes into account the differen-
ce between the image charge and the real charge. We con-
voluted the simulated area into a torus and took the shor-
test distances rij on the torus for Uij calculation. The kinetic 
energy of the charges was neglected. For each charge qi 
we set a displacement in an arbitrary direction through 
a random distance which was not greater than the aver-
age distance between the charges and then recalculated 
the total system energy. If the energy decreased (ΔE < 0) 
the new location of the charge qi was accepted, whereas 
for ΔE ≥ 0 the new charge location was accepted only if 

�
�

�
E

Te r where r is a random value between 0 and 1. The 
iterations were continued after reaching a “constant” E. 
Due to the finiteness of N the relative width δE/E of the 
system’s internal energy distribution is not infinitely 
small: δE/E ~ 1/N1/2 ~ 0.01. For each E fluctuating near the 
most probable value, we found the ri distributions and cal-
culated ρq, |ρq|

2 using Eqs. (2) and (3). Then we found the 
mean |ρq|

2 distribution for multiple iterations. This allo-
wed us to imitate |ρq|

2 for a far greater system than the test 
area. Example of this mean |ρq|

2 distribution is shown in 
Fig. 3a. The white wide-centered cross is caused by a fini-
te size of the calculation area in the (x, y) plane. The struc-
tural factor has no angular dependence outside this cross. 
By processing the |ρq|

2 distribution we found the depen-
dence of the structural factor on the absolute value of the 
wave number Fq (Fig. 3b). It can be seen from Fig. 3 that 
the F(q) dependences simulated using the Monte Carlo 
method are close to the theoretical ones (Eq. (4)) at q < 0.1 
nm-1 and 100 K ≤ T ≤ 1100 K. The considerable decrease 
in F(q) in comparison with that for white noise Fq = 1 
demonstrates the electrostatic self-organization of surface 
charge within the suggested simple model.

5. Comparison: calculation vs 
experiment

Our colleagues from the University of New South Wa-
les, Australia, experimentally studied structures with ga-
te-induced 2D electron gas (d = 25 nm, z = 45 nm) and 
2D hole gas (d = 20 nm, z = 68 nm). We compared the 
scattering times τq and τt calculated using Eqs. (4) and 
(5) and the experimental scattering times for these speci-
mens. The experimental scattering times (lifetimes) were 
estimated using a standard method [25–28]. The trans-
port scattering time τt in the experiment was determined 
from the carrier mobility µ, and the quantum time τq was 
found from the measured magnetic field dependences 
of the Shubnikov–de Haas oscillations amplitude. The 
parameter in these cases was the experimental density 
of the gate-induced 2D gas, i.e., the Fermi momentum 
in Eqs. (5). The data and details of their processing for 
obtaining experimental τq will be published separately. 
This work focuses on the key simulation results. For the 
typical densities of 2D electron gas (ne ~ 1.4 × 1011 cm-2) 

Figure 2. The behavior of the integrands in formulas (5) for the 
indicated T and structure with a 2DEG in which d = 25 nm, 
z = 45 nm, nσ = 5 · 1011 cm-2.
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and 2D hole gas (nh ~ 0.6 × 1011 cm-2) the experimental 
τt were 2–3 times greater than those calculated in the 
assumption of a fully disordered surface charge distri-
bution (Fq = 1) which corresponds to the infinite tem-
perature T in this model. The experimental quantum 
scattering time τq also was greater than that calculated 
in the Fq = 1 assumption. The underestimation of the the-
oretical scattering times τtheor in comparison with the ex-
perimental ones τexp cannot be eliminated by making the 
natural assumption that experimental results are affected 
by theory-unaccounted scattering mechanisms with the 
characteristic time τ0. Indeed taking these mechanisms 
into account in the theory would further underestimate 
the calculated times (τnew < τtheor< τexp) in accordance with 
the common rule:

� �
τ τ τnew theor 0

1 1 1 .	 (7)

On the contrary, it is clear from Eqs. (5) that the 
self-organization of surface charges reduces F(q) (Fig. 
3b) while increasing the carrier scattering times in 2D gas 
in comparison with the Fq = 1 case. At Fq ≠ 1 Eqs. (4) and 
(5) contain only one free parameter, i.e., the ri distributi-
on freezing temperature T. Restricting oneself to a single 
free parameter is quite convenient for finding the frozen 
F(q) by fitting the model to experiment at the characteris-
tic 2D gas density. This fitting yielded disorder freezing 
times T ≈ 1000 K for a 2D electron gas specimen and 
T ≈ 700 K for a 2D hole gas specimen. Successful fit-
ting indicates surface charge self-organization in the test 
structures. Since the simplified model disregards all the 
disorder factors except the thermodynamic equilibrium 
temperature, the resultant temperatures T are the upper 
estimates of the real disorder freezing temperature which 

is unknown for this type of systems. However the ri di-
sorder corresponding to the resultant temperatures T is 
probably close to the actually frozen one. It should also 
be noted that the simulated freezing temperatures of loca-
lized charges are almost two times higher than the actual 
temperatures of post-growth dielectric and gate depositi-
on operations [5–12].

6. Conclusions

Summing up we considered self-organization of localized 
charges at the interface between gate dielectric and undo-
ped semiconductor heterostructure containing gate-indu-
ced 2D electron or hole gas. In the suggested analytical 
formulas and Monte-Carlo calculations we used only one 
free parameter, i.e., the disorder freezing temperature. 
This temperature was found by comparing the calculated 
and experimentally measured transport and quantum sca-
ttering times for 2D carriers.
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Figure 3. (a) An example of the averaged distribution |ρq|
2 in the case of nσ = 5 ·1011 cm-2 in an equilibrium state with a temperature 

T = 100 K: Monte Carlo calculation; (b) dependence of the isotropic structural factor Fq for the same nσ and indicated T. Thick solid lines 
were obtained by the Monte Carlo method. Thin solid and dotted lines are calculated according to the theory of a one-component plasma.
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