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Abstract
The electronic structure and magneto-optic properties of the Sr2GdReO6 double perovskite were investigated using the 
full-potential linearized augmented plane wave (FPLAPW) method. Exchange correlation effects are treated using the 
generalized gradient approximations GGA, GGA + U and GGA + U + SOC approachs. At ambient conditions, these 
calculation predict a half-metallic character for Sr2GdReO6 material. The electronic band structures and density of 
states demonstrate that Sr2GdReO6 is HM with a magnetic moment of 9 µB/fu and HM flip gap of 1.82 eV. The half me-
tallicity is attributed by the double-exchange interaction mechanism via the Gd(4f )–O(2p)–Re(t2g) π-bounding. These 
new double perovskite may become ideal candidate material for future spintronic applications. The analysis charge 
densities show that bonding character as a mixture of covalent and ionic nature. The optical properties are analyzed 
and the origin of some peaks in the spectra is described. Besides, the dielectric function ε(ω), refractive index n(ω) and 
extinction coefficient K(ω) for radiation up to 14 eV have also been reported.
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1. Introduction 

Many works have been focused on the double-perovskite 
structure with different compositions and structures be-
cause of to their possible applications in numerous indus-
trial and engineering domains [1–5]. These compounds 
have many interesting properties such as tunnelling 
magnetoresistance [6], colossal magnetoresistance [7], 
ferromagnetism [8, 9], magneto-optic properties [10], 
metallicity [11], multiferroicity [12] and magnetodielec-
tric properties [13]. The observation of high magneto-re-

sistance in half-metallic for Sr-based double perovskite 
with fairly high transition temperature [14] of 410 K indi-
cates the promise in double perovskite materials as can-
didates for high temperature half metallic magnets [15].

Many double-perovskite compounds are found to pos-
sess the half-metallic band structure as revealed by the 
ab-initio calculations [16–22]. Samanta et al. [23] cal-
culated the electronic structures and magnetic properties 
of Sr2CrOsO6 using full-potential linearized augmented 
plane wave (FPLAPW) scheme within the (GGA) + U. 
Jeng and Guo [24] calculated magnetic and electronic 
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structure of Sr2FeMoO6, Sr2FeReO6, and Sr2CrWO6 using 
full-potential linear muffin-tin orbital method within the 
GGA + U and LSDA + U methods. The electronic struc-
ture calculations predicted a HMF band structure with 
spin magnetic moment of 4μB, 3μB, and 2μB per formula 
unit for Sr2FeMoO6, Sr2FeReO6, and Sr2CrWO6, respec-
tively. Faizan et al. [25]. also predicted that Sr2XOsO6 
(X = Li, Na, Ca) were HM ferromagnets. The electronic 
structure calculations predicted a HMF band structure for  
Sr2XOsO6 (X =  Li, Na, Ca), with energies band gap of 
1.90, 1.83 and 2.24 eV for Sr2LiOsO6, Na and Ca respec-
tively. The structural and electronic properties have been 
investigated at zero and elevated pressure for the double 
perovskite Sr2GdReO6 using the density functional theory 
(GGA) + U approach [26].

In the present paper, the magnetic, electronic and op-
tical properties of Sr2GdReO6 are reported. As far as the 
electronic structure and optical properties of materials 
are concerned, these features play a crucial role in deter-
mining their magneto-optic properties for devices. The-
refore, accurate knowledge of these properties is very 
important for the application. The aim of this work is to 
examine the electronic band structure of Sr2GdReO6, with 
emphasis on its derived properties. The calculations are 
performed using ab initio a full relativistic version of the 
full-potential augmented plane-wave scheme within GGA 
and GGA + U approachs. The rest of the paper is organi-
zed as follows: The theoretical background is presented in 
Section 2. Results and discussions are presented in Secti-
on 3. A summary of the results is given in Section 4.

2. Method of calculations

For the present computational study, we have conside-
red the experimental crystal parameters [27] as repor-
ted by Baud and Capestan. Sr2GdReO6 crystallizes in 
the (Fm3m cubic space group), with Z = 4 formula unit 

per unit cell having a lattice parameters of 8.279 Å. The 
Wyckoff positions of atoms with an occupancy of 1 are 
as follows: Sr 8c (0.25, 0.25, 0.25), Gd 4b (0.5, 0.5, 
0.5), Re 4a (0, 0, 0) and O 24e (0.25, 0, 0). The crystal 
structures of these compounds are shown in Fig. 1. We 
have used the full-potential linearized augmented plane 
wave (FP-LAPW) and local orbitals method through a 
density functional theory approach [28, 29]. Here, the 
Kohn–Sham equations are solved by expanding the wave 
functions in the spherical harmonics form inside the atom 
spheres. Plane wave expansion is used in the interstitial 
regions of atoms inside the unit cell. We have used lmax 
= 10 for angular momentum expansion and RMTKmax = 
8 as a plane wave cut-off with 2000 k points to achieve 
self-consistency. Here RMT is the average muffin-tin (MT) 
radius and Kmax is the wave function cut-off. The radii RMT 
of the muffin tins (MT) are chosen to be approximately 
proportional to the corresponding ionic radii. The energy 
between successive iterations is converged to 0.0001 Ry 
and forces are minimized to 1 mRy Bohr-1. The Monk-
horst–Pack (MP) technique is used for Brillouin zone in-
tegrations. Exchange-correlation effects are treated using 
generalized gradient approximation (GGA) as paramete-
rized by Perdew et al. [30] and GGA + U by Anisimov 
et al. [31] with an approximate correction for the self-in-
teraction correction. This is probably best suited for our 
system and for a full potential method we use an effective 
Ueff = U + J, setting J = 0.5 and U = 7.4 eV, for Gd atoms 
and J = 0.3, U = 3 eV for Re atoms quoted from Refs. 
[32] and [33], respectively. To treat the interactions of 
heavier elements like Gd and Re one needs to consider 
SOC during the calculations. A dense k-mesh with 5000 
k-points was used in the first Brillouin zone to calculate 
the linear optical properties.

Optical properties of a solid are usually described in 
terms of the complex dielectric function ε(w) = ε1(w) + 
iε2(w). The imaginary part ε2(w) was calculated from the 
momentum matrix elements between the occupied and 
unoccupied wave functions within the selection rules. The 
real part ε1(w) of the dielectric function was calculated by 
the Kramers–Kronig transformation [34] of the imaginary 
part ε2(w). Other optical constants were computed from 
the values of ε(w). The frequency dependent complex die-
lectric tensor ε2(w) components are calculated by using 
the following mathematical expressions [35]:
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 is the polarization vector of light. O ec sν ν  
is the optical transition matrix from valence to conducti-
on states and P is the principal value of the integral and 
the integral is over irreducible Brillouin zone. The optical 
constants such as refractive index n(w) and the extincti-
on coefficient k(w), are calculated interms of the real and Figure 1. The crystal structures of Sr2GdReO6 compound.
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the imaginary parts of the complex dielectric function as 
follows [36]:
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3. Results and discussion

As presented in Fig. 2, the electronic properties of the 
Sr2GdReO6 compound are assessed the band structures, 
total and partial densities of states of Gd f, Re eg and t2g, 
Sr eg and t2g and O pz and d electrons in FM phase. Note 
that the density of states was presented only for GGA + U 
method because it is similar to that of GGA and GGA + 
U + SOC method with a small difference. It is clear that 
the majority-spin band is metallic, while the minority spin 
band shows a semiconducting gap around the Fermi level. 
The energy band gap (Eg↓ = 2.02 eV) in spin down chan-
nel is formed by the nonbonding states Re 4d of the con-
duction band and the bonding states O p of valence band. 
The present study show that the energy gap for spin-down 
electrons for Sr2GdReO6 compound is 2.02 eV, and close 
to the energy gap values for the La2CrZnO6 compound 
[37]. This energy gap in the minority-spin band gap leads 
to 100% spin polarization at the Fermi level, resulting in 
the half-metallic behavior at equilibrium state.

We have calculated the band structure along symme-
try directions in the first Brillouin zone with/without SOC 
and this is shown in Fig. 3. Note that, there is an overall 
topological resemblance for Sr2GdReO6 compound for 
both methods.

The half-metallic gap [38, 39], which is determined 
as the minimum between the lowest energy of majority 
(minority) spin conduction bands with respect to the Fer-

Figure 2. Spin-polarized a) band structure, partial and b) total 
densities of states (TDOS) of Sr2GdReO6 compound.

Figure 3. The calculated band structure for GGA, GGA + U and GGA + U + SOC of Sr2GdReO6 compound.
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mi level and the absolute values of the highest energy of 
the majority (minority) spin valence bands, is 1.82 eV, for 
both method. 

The hybridisation bonding states pz and d electrons of 
O element (See Fig. 2a), which contribute to the TDOS 
in the energy region from –8.0 to –2.0 eV for both spin 
channels, are mainly formed by Gd-4f and t2g states of 
Re atoms creates fully occupied bands with a positive 
spin-splitting (the exchange-splitting between the spin-up 
and spin-down sub-bands of the Gd 4f states is approxi-
mately 4.75 eV, which is the main contributor in the mag-
netic moment of these compound).

For unoccupied states of both spin channels above the 
Fermi level, the nonbonding hybridisation state in spin- 
down channel of TDOS is 4F-Gd and eg electron of Re 
atoms situated in the range from 0.5 to 4.0 eV, and the eg 
and t2g states of Sr atoms contribute to the majority and 
minority spin states mix with eg electron of Re atom in the 
region from 4.0 to 8.0 eV.

The calculated total and atom-resolved magnetic mo-
ments, using GGA, GGA + U and GGA + U + SOC for 
Sr2GdReO6 compound, are summarized in Table 1. The 
present study shows that the total magnetic moment for 
Sr2GdReO6 compound is ≈ 9 µB/fu for both approxima-
tions. Here, the main contribution to the total magnetic 
moment is due to Gadolinium and Rhenium atom, and the 
magnetic moment on the Strontium and Oxygen atoms 
are small. Our results for magnetic moment for Gadoli-
nium atoms which is in agreement with previous studies 

[40, 41]. The magnetic moments of the Rhenium atoms 
are in agreement with theoretical data [42]. 

Normally, exchange interactions are very short-ran-
ged, confined to electrons in orbitals on the same atom 
or nearest neighbor atoms but longer-ranged interactions 
can occur via intermediary atoms and this is termed su-
perexchange. The double-exchange mechanism is a type 
of a magnetic exchange that may arise between ions in 
different oxidation states. First proposed by Clarence 
Zener [43] and later developed by Anderson an d Hase-
gawa [44], by Kubo and Ohata [45] and by Furukawa 
[46], is generally agreed to provide a description of the 
FM ground state this theory predicts the relative ease with 
which an electron may be exchanged between two spe-
cies. Electronic structures from a full-potential linearized 
augmented plane wave method also demonstrated that the 
half-metallic character is not caused by direct Gd-Gd or 
Re-Re interactions but by indirect O–Gd–O–Re p–f and 
π–d couplings, which are simulate ane ously responsible 
for their ferrimagnetic character [46]. 

In order to understand the nature of chemical bonding, 
we display, in Fig. 4 the contours of charge densities in 
(110) plane for Sr2GdReO6 compound. From Fig. 4, we 
can see that the near spherical charge distribution around 
the Sr atoms site is negligible and as a result the Sr atoms 
are fairly isolated, indicating that the bonding Sb-O has 
expected to be some ionic character. On an other hand, the 
O atoms hybridization with Gd and Re atoms for spin-up 
and spin-down (See Fig. 2a), happen with an interaction 

Table 1. The calculated total and partial magnetic moment (in μB) for Sr2GdReO6 compound.

mGd mRe mSr mO m interstitial mTotal

 GGA 6.72563 1.31451 0.0088 0.04382 0.67677 9.00

 GGA + U 6.75414 1.34922 0.0072 0.03992 0.64067 9.00

GGA + U + SOC 6.77910 1.33155 0.0070 0.04507 0.62448 9.00

Figure 4. Charge density distribution in the plane (110) of Sr2GdReO6 compound.
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between the Gd and Re with O atom, indicating that a 
covalent interaction occurs between Gd and Re with O 
atoms. The bonding character may be described as a mix-
ture of covalent and ionic character. To our knowledge, 
there are no experimental or theoretical data reported for 
the electronic structure for the material of interest, and 
hence our results are predictions.

Magneto-optical effects comprise various changes in 
the polarization state if light upon interaction with mate-
rials possessing a net magnetic moment, including rota-
tion of the plane of linearly polarized light (Faraday, Kerr 
rotation), and the complementary differential absorption 
of left and right circularly polarized light (circular dichro-
ism) [47]. 

Mainly, the first Microscopic dielectric function des-
cribes the behaviour of linear response of a material to the 
electromagnetic radiation field applied which displays the 
absorptive character of that material. The real part of the 
dielectric function describes how much material polari-
zed as a result of induced electric dipole creation when an 
electric field is applied while the imaginary part indicates 
how much material absorption photon energy. There are 
two contributions to ε2(ω), namely, intraband and inter-
band transitions. The contribution from intraband transiti-
ons is important only for metals. The interband transitions 
can further be split in to direct and indirect transitions. 
We neglect the indirect interband transitions, which invol-
ve scattering of phonons and are expected to give only a 
small contribution to ε2(ω).

In Fig. 5a we present the dielectric function of Sr2G-
dReO6 as calculated by FP-LAPW method. For energies 
up to 14 eV, based on our calculated band structure it would 
be worthwhile to identify the interband transitions that are 
responsible for the structure in ε2(ω). Our analysis of the 
ε2(ω) spectra shows that the threshold energy (first criti-
cal point) of the dielectric function occurs at about 2.39, 
2.62 and 3.83 eV, respectively. These points are mainly 
coming from the electron transition from the Gd 4f (VB), 
O-d(VB) and O-pz(VB) to Re t2g (CB) orbitals. We note 
that in Sr2GdReO6 compound, ε2(ω) shows peaks located 
at 6.64 eV and 7.51 eV, respectively. This point is mainly 
derived from the transition from Gd 4f (VB) and O-d(VB) 
to Sr t2g (CB) orbitals. The behaviour of ε1(ω) (See Fig. 
5b) seems to be rather similar to that of ε2(ω). Below the 
reststrahlen region in the optical spectra, the real part of 
the dielectric function asymptotically approaches the stat-
ic or low-frequency dielectric constant ε0, in the present 
contribution, the calculated static dielectric constant ε0 for 
spin-down is 2.93 for Sr2GdReO6 compound. 

The refractive index is a quantity that describes how 
much light is refracted after entering material [48, 49]. 
The calculated refractive index n(ω) and the extinction 
coefficient k(ω) using GGA approach are displayed in 
Fig 5 (c and d). From the refractive index plot, we re-
mark that the material possesses high refractive index 
within Infrared region and decreases at higher energy in 
the Ultraviolet lointain. Note that in this compound the 
extinction coefficient has resonance in the low energy 

Figure 5. The calculated a) real parts of dielectric function, b) imaginary parts of dielectric function, c) refractive index and d) 
extinction coefficient.
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region. Our results of k(ω) show that Sr2GdReO6 has 
strong extinction effects at Infrared region and then de-
creases with photon energy forming the maximum peak 
at 0.8 eV. In the absence of both experimental and the-
oretical data of the dielectric function, refractive index 
and extinction coefficients for the material of interest, to 
the best of our knowledge, no comment can be ascribed 
to used method and hence our results may serve only for 
a reference.

4. Conclusion

For the Sr2GdReO6 compound, The electronic structu-
re and magneto-optic properties the electronic structure 

and magnetic has been studied by using first-principle 
FPLAPW calculation method..At ambient conditions, 
these calculation predict a half-metallic character for 
Sr2GdReO6 material. The electronic band structures and 
density of states demonstrate that Sr2GdReO6 is HM with 
a magnetic moment of 9 µB/fu and HM flip gap of 1.82 eV. 
The half metallicity is attributed by the double-exchan-
ge interaction mechanism via the Gd(4f )–O(2p)–Re(t2g) 
π-bounding. The analysis of charge densities contours 
leads us to conclude that the bonding character in Sr2G-
dReO6 compound is a mixture between covalent and ion-
ic nature. To complete the fundamental characteristics of 
this compound we have analyzed their optical properties 
such as the dynamic dielectric function, refractive index, 
extinction coefficient for a wide range of 0–14 eV.
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